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Faster R-CNN and 3D reconstruction for handling tasks 

implementing a Scara robot 
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Abstract: This paper presents the design and results of using a deep learning algorithm 

for robotic manipulation in object handling tasks in a virtual industrial environment. The 

simulation tool used is V-REP and the environment corresponds to a production line 

based on a conveyor belt and a SCARA type robot manipulator. The main contribution 

of this work focuses on the integration of a depth camera located on the robot and the 

computation of the gripping coordinates by identifying and locating three different types 

of objects of interest with random locations on the conveyor belt, through a Faster R-

CNN. The results show that the system manages to perform the indicated activities, 

obtaining a classification accuracy of 97.4% and a mean average precision of 0.93, 

which allowed a correct detection and manipulation of the objects. 
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1 Introduction 

DVANCES in artificial intelligence are making 

possible to address problems that involve the 

recognition of patterns [1]. Deep learning, through the 

use of convolution layers that abstract feature maps, has 

allowed creating networks that manage to develop a 

wide range of tasks, of which object recognition [2] and 

face detection [3] can highlight. Specifically, the 

convolutional neural network (CNN) [4] is widely used 

in classification tasks, while the faster R-CNN [5-7] 

addresses localization problems, which allows detecting 

different kinds of objects in the same image. Faster R-

CNN architecture is of special interest since it has 

proven to be more efficient than its predecessors: R-

CNN and fast R-CNN [8]. 

The scope that can be obtained through Deep Learning 

can be greater, for example, in [9], the use of a CNN 

with an encoder-decoder architecture is appreciated to 

find areas of interest in RGB-D images, for grasping 

objects in a given robot environment. The CNN-based 

architectures demonstrate to be able to approach 
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segmentation problems [10], for example, in [11] a 

network called PoseCNN is developed, which estimates 

the position and orientation of the objects. 

These investigations are important in fields such as 

robotics, since they allow the creation of developments 

that are applicable to object recognition and handling 

tasks [12], where an anthropomorphic robot and a Faster 

R-CNN are implemented to perform classification, 

where the creation of a point cloud in the environment is 

of special interest in this type of work. In [13], it can be 

seen a work that implements this tool in conjunction 

with a neural network based on a CNN to perform the 

control of a 6 DoF robot, the point cloud is found from 

an RGB-D camera, and through the depth image, it is 

possible to perform the inverse kinematics of the robot 

to hold the objects that have been pointed by a laser 

pointer. It is applicable in obstacle avoidance systems 

[14] and even in mapping tasks for mobile robots [15-

17] and collaborative robot work [18][19]. 

As mentioned, the current state of the art is the use of 

depth cameras and deep learning algorithms for 

industrial applications in controlled environments with 

robot manipulators. However, when the positional 

reference of the object to be grasped by a robotic 

manipulator change, it is necessary to set the robot 

kinematics as a function of the camera coordinates in 

order to dynamically adjust the new motion angles for 

grasping. The integration of the coordinate equations and 
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object localization using a faster RCNN with the 

adjustment of the robot position is the main contribution 

of this work, as it extends the contributions of the state 

of the art to semi-controlled environments and 

complements work such as that presented in [20]. For 

this work, a virtual environment (V-REP) and a RGB-D 

camera is used to create the point cloud used in the 3d 

reconstruction of the robot's working area. In addition, 

there is explained how the homogeneous transformation 

matrices are implemented in conjunction with the point 

cloud to calculate the inverse kinematics of the robot.  

The first section of this paper presents the introduction. 

The second section presents the methodology with 

database and the architecture used for the neural 

network, as well as the model with which the camera is 

parameterized, and the point cloud of the environment is 

obtained. The third section presents the results and 

finally the conclusions. 

2 Materials and Methods 

In order to locate and arrange objects in a production 

line, using a Faster R-CNN and a depth camera, a virtual 

environment is created in V-REP and shown in Fig. 1. In 

this environment, it can be seen, the objects of interest, 

the Scara robot, the field of view of the camera and the 

image captured by it.  

The network database comes from pictures taken 

through an RGB-D camera located in a link of the Scara 

robot. A generic depth camera provided by the simulator 

is used, of the Real sense type with a resolution capacity 

of 1280 X 720 and a deep field of view of 85.2 x 58. The 

objects of interest are in a conveyor belt that contains 

them in a disorderly manner, so that when the database 

is generated, random images are obtained. 

Fig. 1 Scene built in V-REP 

The database consists of 1659 RGB images, an amount 

that is found experimentally, with a resolution of 

128x128 pixels containing 3 classes of objects that have 

been manually labeled, which are transformer, sensor 

and wheel. The resolution chosen in the camera has the 

purpose of increasing the speed of communication 

between the V-REP environment and the software that 

indicates the orders, since the images must be exported. 

90% of the images have been prepared for the network 

training phase and the remaining 10%, for the validation 

phase. A sample of the images labeled in the database is 

presented in Fig. 2. 

 
Fig. 2 Manual labeling of the images. 

As mentioned above, the architecture used for 

classifying and locating objects is called Faster R-CNN. 

This architecture is explained in [21], where it is argued 

that its efficiency is since an external algorithm is not 

used to obtain the regions of interest; on the contrary, a 

network is trained that is totally focused on this task, 

called RPN, it shares the convolution layers with a Fast 

R-CNN, making the required processing less. Together 

the Fast R-CNN and the RPN form the Faster R-CNN. 

In Fig. 3, the architecture used can be seen. 

 

Fig. 3 Faster R-CNN architecture. 
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(a)                                                              

 
(b) 

Fig. 4 (a) PR graph. (b) Confusion matrix 

The inputs of the network are RGB images containing 

objects that must be within a region of not less than 

30x30 pixels, a value that was determined after 

reviewing the smallest region of interest (RoI) in the 

database. This architecture is trained in four stages. The 

first one performs RPN training using a learning rate of 

1x10-4. The second stage uses the regions of interest 

produced by the RPN to train a Fast R-CNN with a 

learning rate of 1x10-4. The third stage joins the 

convolution layers of the RPN and the Fast R-CNN to 

refine only the weights of the exclusive layers to the 

RPN with a learning rate of 1x10-5. Finally, in the last 

stage the network is trained by refining only the 

exclusive layers to the Fast R-CNN with a learning rate 

of 1x10-5, training was performed with 100 epochs, an 

iteration frequency of 1054 and an SDGM optimizer 

[21].  

Once this is done, the performance of the network is 

evaluated using the PR (precision vs recall) graph and 

the confusion matrix that has been obtained with the test 

data (see Fig. 4). Fig. 4(a) shows that the accuracy 

approaches 1 at different recall levels, which indicates 

that the percentage of correct classifications made by the 

network has a good performance. The average accuracy 

obtained for each class is shown in the upper part of the 

graph. This value allows to see the ability of the network 

to find relevant objects and make correct classifications. 

Fig. 4(b) shows the confusion matrix, from which 97.4% 

of correct classifications are obtained for the test data 

base. 

3 Point Cloud and Camera Model 

The point cloud is a set of data that describes the 

position of a large number of points with respect to a 

coordinate system. These points allow the 3D 

reconstruction of the environment, so it is a means to 

know the position of the objects that have been detected 

by the Faster R-CNN. Depth information from the point 

cloud is used for camera calibration and spatial 

localization of the coordinates with respect to the robot. 

The network training is responsible for the two-

dimensional localization and classification of the shape 

features of each object, working in conjunction with the 

depth for the robot's grasping and ordering tasks. In the 

network training for identification, the point cloud does 

not provide any information about the object type, 

except for the possible shape of the object, which by 

itself is not discriminative. 

The objective of using this tool is to obtain the relative 

position of the elements with respect to the base 

coordinate system of the robot, and thus be able to 

calculate the inverse kinematics with which the gripper 

is moved to the target. To obtain this data, the intrinsic 

and extrinsic parameters of the RGB-D camera must be 

found, which describe how the objects are projected to 

form the captured photograph. In equations (1) to (3), 

this transformation is presented, which does not consider 

any distortion due to the lenses [22] [23]. 

[
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𝑦𝑜

1

0
0
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] (2)  

𝑯 = [
𝑹 𝒅
𝟎 1

] (3)  

In equation (1), the matrices involved in the 

transformation are shown. The matrix K is called 

intrinsic parameters of the camera, which depends on the 

distance of the focal axis f, scaling constants sx and sy 

that transform the units of distance to pixels, and 

translation constants x0 and y0 that measure the position 

of the optical axis of the camera with respect to the 

coordinate plane from which the pixels are measured. 

The matrix H is called the matrix of extrinsic 

parameters, this makes it possible to relate the 

coordinate axes of the camera with respect to a base 

plane, such as, for example, the base plane of the Scara 

robot. The homogeneous coordinates (X, Y, Z, 1) locate a 
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point with respect to the base plane of the robot, while 

the homogeneous coordinates (px, py,1) locate, in pixels, 

the projection of the point on the camera. A graphic 

explanation of this can be seen in Fig. 5.  

 

 
Fig. 5 Perspective projection according to the pinhole camera 

model. 

The point P, which is located with respect to the 

coordinate system of the robot, is projected through a 

perspective projection towards the plane of the image. 

The projection results in pixels px and py, which store the 

captured RGB color. The depth channel considers the 

distance of said point from the plane of the camera. To 

find the coefficients that are in the intrinsic parameter 

matrix, the methods called "direct linear transformation" 

and "Zhang method" can be used [24], of which the last 

one is the most used due to its flexibility, since it only 

requires photographs where there should be a chessboard 

with known measurements. The images taken in V-REP 

for this purpose can be seen in Fig. 6. By this, it is 

possible to obtain the matrix of intrinsic parameters 

shown in Eq. (4). 
 

𝑲 = [

111.91𝑝𝑖𝑥𝑒𝑙

𝑐𝑚
0
0

0
111.99𝑝𝑖𝑥𝑒𝑙

𝑐𝑚
0

64.5𝑝𝑖𝑥𝑒𝑙
64.6𝑝𝑖𝑥𝑒𝑙

1

0
0
0

] 
(4)  

 

The virtual robotic system for exercise monitoring 

allows the user to select the exercise to be performed, 

the number of repetitions and the rest time. The system 

tracks the sequence by counting both the repetitions and 

the rest time and only requires the use of a computer 

with a web camera where the designed virtual robot is 

installed. To calculate the point cloud with respect to the 

base plane of the camera (x’, y’, z’), Eq. (5) must be 

applied. This can be abstracted from Eq. (1), considering 

that it is treated with homogeneous coordinates. 

[
𝑋′
𝑌′
𝑍′

] = [
𝑓𝑥 0 𝑥𝑜

0 𝑓𝑦 𝑦𝑜

0 0 1

]

−1

∙ [

𝑝𝑥 ∙ 𝑍′

𝑝𝑦 ∙ 𝑍′

𝑍′

] 
(5)  

The value of Z’ is given by the RGB-D camera in the 

depth channel and it must match the units of the fx and fy 

coefficients.  It must be applied Eq. (5) for each pixel of 

the entire depth image and then graph the calculated 

points, which can have the color indicated by the RGB 

image. The environment in V-REP, the depth image and 

the point cloud can be seen in Fig. 7. 

 

 

 

 

 

 

 

 

Fig. 6 50x50 cm chessboard used to calibrate the camera. 

  
(a) (b) 

 
(c) 

Fig. 7 (a) Environment in V-REP. (b) Depth image. (c) Point 

cloud. 

With the information obtained by the point cloud and 

the Faster R-CNN, it is possible to obtain the position of 
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the objects with respect to the camera. To find this 

information with respect to the plane of the robot from 

which the inverse kinematics is calculated, the 

homogenous transformation matrix H must be found, 

that is explained in [25]. The matrix H of Eq.  (1) 

transforms the points of the plane (x, y, z) to the plane 

(x’, y’, z’), so in reality it is wanted to find the inverse of 

that matrix. Since the points with respect to the plane of 

the camera have already been obtained, they must be 

transformed to the plane of the robot. Fig. 8 shows the 

configuration of the robot and the location of the 

camera's plane. 

 
Fig. 8 Coordinated axes of the robot and the camera. 

Fig. 8 allows to observe the coordinate axes of the 3 

links that make up the robot. There are two rotational 

and one prismatic, so this robot is a Scara RRP. The 

number of generalized coordinates depends on the 

number of degrees of freedom, and these must be 

calculated to bring the gripper plane (x2, y2, z2) to the 

detected object. Next, equations (6) to (9) present the 

generalized coordinates and the transformation matrices 

to obtain the H matrix. 

𝑞 = [
𝜃1

𝜃2

𝑑

] (6)  

𝒑𝒐  = 𝑻𝟏 ∙ 𝑻𝟐 ∙ 𝒑(𝒙′,𝒚′,𝒛′) = 𝑯−𝟏 ∙ 𝒑(𝒙′,𝒚′,𝒛′) (7)  
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0
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1
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1
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𝑠𝜋
0

0
−𝑠𝜋
𝑐𝜋
0
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1

] (9)  

Equation (6) contains the generalized coordinates that 

describe the robot. Equation (7) expresses how points of 

the camera plane (x’, y’, z’) are transformed to the base 

plane of the robot (x, y, z). Equation (8) contains the 

homogeneous matrices that relate the base plane of the 

robot with the base plane of the second link, which has a 

rotation around the axis and then a translation. Equation 

(9) expresses the homogeneous matrices that relate plane 

1 to the plane of the camera, which uses a rotation 

around the axis, a translation and then a rotation of 180 

degrees around the X axis. 

4 Results and Discussion 

Once the network is trained, its operation is validated, 

as it is seen in Fig. 9. The results demonstrate that no 

situation occurred in which there were errors in the 

classification and manipulation of objects, which 

demonstrates the robustness of the Faster R-CNN to 

solve problems related to robotics.   

It can be seen in Fig. 9(a), that the network detects 

several regions of interest among which some are not on 

an object. This error is solved by selecting the most 

relevant results, i.e. the elements that have an accuracy 

in the classification lower than 90% are filtered and the 

remnant is considered as the result of the network, as 

seen in Fig. 9(b). 

 

(a)                                        (b) 

Fig. 9 (a) Results of the Faster R-CNN. (b) Relevant results of 

the network. 

In Fig. 10, the objects in the main band with random 

positions can be seen; these are manipulated to perform 

3 types of applications: the assembly of a structure (see 

Fig. 10a), the ordering of the products in a conveyor belt 

(see Fig. 10b) and the packaging of these (see Fig. 10c). 

The average time required to perform the classification 

and manipulation of the objects were 68 ms for the 

Faster R-CNN and 4.5s for gripping actions, using a 

computer with GPU Nvidia GTX 1050 with processor 

Inter® Core i7™ and 16 GB of RAM. 

5 Conclusions 

Applications that require locating and classifying 

objects within an RGB image can be perfectly addressed 

using a Faster R-CNN network. This can achieve high 

accuracies that make it reliable for jobs in the industry. 

In addition, its architecture allows to detect several 

objects in the same image with response times that are 

appropriate to include it in work applications in real 

time. 

The data contained in the point cloud is ideal to work 

together with the results delivered by the faster R-CNN, 

this complements the information obtained regarding the 

location of the objects, allowing to perform manipulation 

work through fixed robots. 

The use of generalized coordinates that describe the 
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robot and the points of the camera plane, are necessary 

for the localization and grasping of objects in 

autonomous production systems, given the reference 

changes that the objects may undergo in relation to the 

camera position.  

 

 

 

(a) (b) 

 
(c) 

Fig. 10 (a) Objects with random positions in the band. (b) 

Armed 3D structure. (c) Packaging of products. 
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